27 07 2011


“…At the basic level, it is pure biology.  At the most pessimistic, it lowers productivity.  At the most positive, it salves the psychological hardships of our project.  But most importantly, at the sociological level, it is the very key to our future and one would be a fool and a tyrant not to let love bloom.”

Lindenmeyr came up behind Stohlberg. She reached for his shoulder and leaned on him. Their footsteps trailed away down the incline, crisp in the duricrust.

“Look at that,” he said, gesturing with that shoulder toward the landscape he was gazing upon. “That’s what I wanted to show you.”

They were standing on the northern lip of the vast crater in which the colonies sat. Below and to their left, maybe a kilometre and a half away, was the looming bulk of Alpha-4. There was the immense slab of the colony pod stretching its length away from them, dusted with regolith from a recent dust storm. The pod loomed over the small buildings that had sprouted at its base. Clutches of modules were stacked atop its dorsal surface. The light rail channel cut across the concave bowl of the crater away toward Charlotte Station.

Lindenmeyr pointed excitedly. “Hey, look, there’s Alpha-3!”

Stohlberg looked past and to the right of the elevator ribbon and saw, across the breadth of the crater and diminished by the distance, the vertical columns of lights of Alpha-3’s skyline. The far crater lip was seven or eight kilometres distant, and a bruised brown-purple colour. Alpha Centauri B had set, and the jagged shadow of Henderson Ridge was cast across the western hemisphere of the crater.

“The crater in which the colonies sit is what we call a simple crater,” Stohlberg explained. He held his hand out flat in front of him, palm toward the ground, and made a sweeping motion that mimicked the curvature of the crater floor. “There is a layer of shattered rock under the floor of the crater, brecciated rocks, along with glassy spatters of melted regolith, shocked quartz, spherulites, tektites. We also find fracture patterns in the underlying bedrock.”

“And the ridges?”

Stohlberg pointed at the ridges that parenthetically enclosed the crater. Along forty-five degrees of the northwestern lip, and one hundred and sixty degrees of the southeastern lip, the crater wall rose up into a series of elevated, serrated outcroppings. These were the Henderson and Innes Ridges.

“Mostly impact ejecta.”

Stohlberg explained that the impactor likely hit Fram’s surface at an angle – he made a cutting motion with his hand – and that the impact directed most of the ejecta to the southeast. Spalled bolides of basalt and impact melt formed opposing ridgelines that were weathered over millions of years by prevailing anabatic winds. More resistant resistant materials remained while the softer regolith was eroded away, leaving those irregular ridges.

Lindenmeyr pointed toward the Henderson Ridge off to their right. Nestled in the lee of the ridge and at the mouth of De Lacaille Canyon was Alpha-2 – a collection of mismatched modules connected by pressurised tunnels, bundled around the light rail terminus.

“The botanists of Alpha-2 have found that the methanogens live well in the complex terrain of the ridges. Plenty of places for volatiles to pool.”

“I guess they, those plants, have become more interesting since the fossils were found up on Amundsen.”

Lindenmeyr gave Stohlberg a playful, backhanded slap across his arm. “Lee! They were plenty interesting before then! I mean, my God: the first multicellular life to be found beyond our homeworld! That we should find something like that on the first world we settle has enormous implications for the likelihood and the frequency and the range of life in our galaxy.”

“Not to mention the possibility that these methanogens might not have evolved on Fram.”

“An anecdotal possibility, yes,” Lindenmeyr replied cautiously. “Once the tarmac and launch system are complete at Wisting Base, we hope to compare samples of the fossils they’ve discovered with the methanogens here. With a DNA analysis we might prove their relation, even identify a point of departure.”

Stohlberg was intoxicated by her enthusiasm.

Lindenmeyr explained that the botanists in Alpha-2 had begun to cultivate the methanogens, even to farm them in their own way. Using hydrogen as a reducing agent, these methanogens produced methane as a metabolic byproduct of carbon dioxide. This methane was captured and condensed into compressed natural gas, an important fuel source that supplemented the troubled colony’s energy requirements. Moreover, methane was crucial for the production of methanol, acetylene, ascetic acid and ascetic anhydride – industrial chemicals that would be of use to the colonies.

“Methane is also a potent greenhouse gas,” Stohlberg noted. “Much more effective than carbon dioxide in trapping heat. We might put that to use in warming Fram.”

“There has been talk about that,” Lindenmeyr responded. She leaned into Stohlberg, conspiratorially. “The Presidium asked for a report on just that topic for the Third Congress. Did you know that, over a century, methane is twenty-five times more effective than a similar-mass emission of carbon dioxide?”

“I didn’t,” he replied, and looked down into Lindenmeyr’s excited eyes.

Stohlberg felt the urge to kiss her on the cheek, quickly, as was his habit; instead, he ran his fingers, hurting from the cold wind in fingerless gloves, through her short hair. Consciously or unconsciously, she nuzzled her head into his hand.

“I love your enthusiasm for your work,” he said. “I could listen to you all day.”

She giggled, a sound poorly translated through the mike.

“Me too.”

And, suddenly, Stohlberg remembered something he had read, long ago: that love was above all else the overwhelming urge to share thoughts. Here were a botanist and a geologist, exchanging their thoughts, discussing the great project of which they were a part, involving one another in their lives. Two humans, yes, standing on an alien world, at the edge of an impact crater millions of years old, gazing with pride and fascination upon their work.

And slowly, irrevocably – like the lithification of strata into eolianite, or the chemiosmosis of hydrogen in an anoxic environment – falling in love.

The Universe given mind and purpose.

Reflected in the faceplate of Lindenmeyr’s suit, Stohlberg could see the rotating silhouette of the bucket wheel excavator, illuminated by the crimson and purple dusk falling below the horizon. The machine was working along the open pit mine far away behind him and to the north, and was distorted by the curvature of her faceplate.

“Are you up for a hike? There’s something else I want to show you.”

Arm in arm, they started off north.

C/2084 N1

21 07 2011

Eleven months after Planetfall, a bright, magnificent comet appeared between Scorpius and Ophiuchus.

Its discoverer named it not after herself but for the middle name of a grandmother left long behind on Earth. Ironically, Comet Tsumugi was discovered as a dirty smudge through a telescope only days before its nucleus began a period of intense outgassing and was visible to all, even during daylight.

It had three visible tails that stretched across forty degrees of the sky, and as it made its closest approach to Fram, it brightened up to magnitude negative eight. The two bluish tails were of ionized gases, and pointed in two directions away from Alpha A and Alpha B. There was a broader, curved tail of dust, and in this dust tail, spiral structures appeared. Tsumugi was laid like a striated carpet across the southern hemisphere of Fram’s sky.

The astronomers explained that it was a fresh comet, as unseen by Fram as it was by those who had so recently come to live upon her surface. Its first journey into the inner system from the Oort Cloud brought it whipping around Alpha B in an elliptical orbit that was deeply declined to the plane of the ecliptic. Its perihelion was a bare thirty-five million kilometres from the star; its closest approach to Fram was a hundred and twenty million kilometres.

Tsumugi’s surface was a dark, primordial crust of frozen carbon dioxide, methane, ammonia and heavy long-chain organics that protected its core of water ice. The light of two main sequence stars warmed the crust, and it absorbed this warmth, its darkness reflecting barely four percent of the light it received. Outgassing began when exposed water ice began to sublimate.

After it passed perihelion, Comet Tsumugi was visible even during those hours of daylight when both suns were in the sky. It was a commanding, inspiring sight, a vision of the beauty of the Universe, made all the more special by the bitterly cold and immense gulf between Fram and Home.

The astronomers also explained that, back Home, great comets were visible from Earth on average once a decade. They said that great comets would be much more frequent in the Alpha Centauri system – with its dense scattered disc and dispersed Oort Cloud, filled with the material that had composed the gas giants around Sol, and disturbed by the interactions of three stars. We would see many more great comets.

But never again Tsumugi. Gravitational perturbations caused by the two stars sent Comet Tsumugi slinging out into an orbital period of millions of years. The comet looped around Alpha B and sailed gracefully back out to the deep scattered disc, to be lost forever in the night…